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CCAT Scientific Inspiration 
• Measure the star and characterize the history of star 

formation in galaxies through cosmic time 
– Photometric surveys to resolve the FIR background 
– Spectroscopic surveys characterizing the energy sources: 

stellar populations, shocks and AGN activity 
• Probe the astrophysics of galaxy clusters through the 

Sunyaev-Zel’dovich effect (S-Z) 
• Characterize the star formation process locally through 

submm-wave spectroscopy and dust continuum 
emission 
– Over 10’s of degree scales and through 5 orders of 

magnitude in scale for in the Milky Way 
– Complete maps over a variety of environments in nearby 

resolved galaxies 
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CCAT Implementation 
Requirements: 
• 25 meter telescope  
• high surface accuracy 

(10 µm RMS goal)  
• superb astronomical 

site:  Cerro Chajnantor 
at 5617 m 
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– Resolves the CIRB 
– Beam ~λ(µm/100) (“) 
– Enables accurate 

astrometry for follow-up  
– Can reach the confusion 

limit at 350 µm in a few 
hours 

– Point source sensitivity 
comparable to ALMA in 
short submm bands:  
discovery and follow-up 
 
 



CCAT Implementation 
Requirements: 
• 25 meter telescope  
• high surface accuracy 

(10 µm RMS goal)  
• superb astronomical 

site:  Cerro Chajnantor at 
5617 m 
– Highly accessible  

• Wide (1°) field of view 
• 20 year lifetime 
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– Takes advantage of 
technological 
innovations 

– Look towards 
future with growth 
of detector 
technology 

– Simultaneous 
mounting and use 
of instrumentation 



Growth in Bolometer Arrays 
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106 

2022 

One million pixels will 
Nyquist-sample the 1° 
CCAT FoV at 350 µm 

Should reach this level 
before the 40 years 
celebration... 



Telescope Design 
• Aperture       25 m 
• Wavelength   350 µm – 3300 µm (200 µm goal) 

– Beam size     3.5 arcsec @ 350 µm 
• Field of view     1° circular  
• Half Wave Front Error  < 12.5 µm rms 

• Gregorian optics, Nasmyth instruments 
• Active primary mirror 

– Al tiles on CFRP subframes, CFRP/invar truss 
– Open loop design, provision for closed loop 

• Insulated steel Az/El mount, fast scan speed 
• Enclosure: protection from wind, Sun 
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CCAT Rear View 
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CCAT Side Views 
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The Site: the driest, high altitude           
site to which one can drive a truck 
to…. 



Looking Down on the ALMA Site 
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Why the Extra 600 Meters? 
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• Submillimeter sensitivity is all about 
telluric transmission 

• Simon Radford has been running 
tipping radiometers at primary sites 
for more than a decade –  

• Simultaneous period for CCAT vs. 
ALMA site:  median is 0.6 vs. 1.0 mm 
H2O ⇒ factor of 1.4 in sensitivity 
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Median Conditions 
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Ω = 3 π, Amed = 1.1 (z < 60°) Pole: Ω = 1 π, Amed = 1.4 (z < 60°) 

Median CCAT 
transmission even 
better than the pole due 
to warmer, less dense 
atmosphere 



Top 10% Opens up THz Windows 
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Ω = 3 π, Amed = 1.1 (z < 60°) 



CCAT Scientific Inspiration 
• Measure the star and characterize the history of star 

formation in galaxies through cosmic time 
– Photometric surveys to resolve the FIR background 
– Spectroscopic surveys characterizing the energy sources: 

stellar populations, shocks and AGN activity 
• Probe the astrophysics of galaxy clusters through the 

Sunyaev-Zel’dovich effect (S-Z) 
• Characterize the star formation process through 

submm-wave spectroscopy and dust continuum 
emission 
– Over large scales and through 5 orders of magnitude in 

scale for in the Milky Way 
– Complete maps over a variety of environments in nearby 

resolved galaxies 
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Photon Energy Density of the 
Universe  
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Optical/NIR Surveys 
(LSST/Euclid) 

CCAT 
Half the optical 
light of stars and 
AGN produced 
over the history 
of the Universe is 
absorbed by dust 
and re-radiated 
in the FIR band 



CCAT Characterizes Luminosity 
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Red-shifted SEDs from Paul 
van der Werf’s web-page 

CCAT 
Bands 

• CCAT measures the LFIR 
for star forming 
galaxies at z > 1 

• For most cases this is: 
– Nearly the bolometric 

luminosity 
– Good estimate for star 

formation rates 
– Note that 850 µm flux is 

insensitive to z, whilst 
350 µm flux is quite 
sensitive 

 

Arp 220 

MW 



Confusion 
• The large CCAT aperture 

breaks the confusion limit 
• Herschel surveys limited to ~ 

25 mJy confusion limit ⇒ 
resolve the CIRB at 10% level 

• Statistically inferred at 50% 
level to 2 mJy/beam 

• 25 m CCAT resolves directly 
sources at ~0.5 to 1 mJy 
level in few hours at 350 µm 

• → large (10-40(°)2)/yr) 
surveys into the most active 
epoch of assembly of 
galaxies and large scale 
structures in the Universe 

• ~ million sources/year 
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Half SWCam 
FoV 

ALMA  
FoV 
(7″) 

HerMES 
Lockman 
Hole 
North 
Oliver et 
al. (2010, 
2011) 

See Patanchon et al. (2010), Glenn et al. (2011) 



Confusion:  25 m vs. 3.5 m 
telescopes 
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Half SWCam 
FoV 

ALMA  
FoV 
(7″) 

CCAT 
Beam 
(3.5″) 



Identifying the Highest Redshift 
Sources:  350 µm Drop-outs 
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>5σ 850 µm detection, 350 µm non-
detections, or “drop-outs” 

350 um Survey 850 um Survey 



Spectroscopic Redshifts 
• Determined with multi-object, large bandwidth, 

direct detection spectrometers 
– Spacing of CO lines:  115 GHz/(1+z) 
– FIR fine structure lines, especially [CII]  

• Most sources detectable in the continuum are 
detectable in the [CII] line (if transmitted): 
– For L[CII]/LFIR = 10-3; [CII]/158 µm continuum ~ 10:1 
– Photometric BW/Spectroscopic BW ~ 1000/10 
– ⇒ sensitivity ratio ~ sqrt(1000/10) = 10:1  
– ⇒ line is as detectable as the continuum 

• CO lines roughly 5 times harder to detect, but the 
detection of multiple lines helps significantly 

 
7 December 2012 New Trends in Radio Astronomy in the ALMA Era 20 



Spectroscopy 
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Redshift L(FIR) Line SNR 
1.15 8 × 1011 [CII] 75 

CO(6-5) 12 

1.85 8 × 1011 [CII] 18 

CO(6-5) 4 

6.3 2 × 1012 [CII] 30 

[NII] 205 µm 6 

ALMA 5 to 10 times more sensitive per 
spectral tuning, but: 
• Several tunings necessary 
• CCAT spectrometer is multi-object 
⇒ Can be more efficient with CCAT 
spectrometer 

• X-Spec:  a very broad 
(50%) BW spectrometer 

• [CII] much easier to 
detect… 

• Multiple CO lines help, 
and uniquely determine 
the redshift 

C. M. Bradford 

[CII] 

CO(6-5) 

[CII] 

CO(6-5) 

[CII] 

[NII] 



Physical Properties 
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• CO SED constrain molecular gas 
mass reservoir and the sources 
of gas heating 
– PDR heating 
– Cosmic rays  
– Micro-turbulent shocks: mid-J 
– XDR heating:  high-J 

• FIR fine-structure lines 
constrain physical parameters 
of the gas and the stellar 
radiation fields 

XDR 
heating 

van der Werf et al. 2010 

Mrk 231 



Fine-Structure Line Science 
• [CII] mostly arises in PDRs on neutral 

clouds exposed to stellar FUV 
• [CII]/FIR yields the intensity of the 

ambient FUV radiation field, Go 
• Observed FIR intensity is connected 

to the modeled Go by the beam 
filling factor⇒  the [CII]/FIR ratio 
indirectly yields the size of star 
formation regions 

• Survey found star formation occurs 
on several kpc scales enveloping 
redshift 1-2 star forming galaxies  
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Contours 
are [CII]/FIR 

Hailey-Dunsheath et al. 2010, 
Stacey et al. 2010 



Fine-Structure Line Science 
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[OIII]/[NII] yields hardness of 
the radiation field ⇒ Age of 
starburst 

[NII]/[CII] yields fraction of [CII] 
from HII regions (Oberst et al. 
2006), or with other F-S lines 
and FIR, metalicity 

Nagao et al. 2012 Ferkinhoff et al. 2011 

SMM J02399 



Instrumentation Plans 
Four instruments are in preliminary design phase, all 
multi-institutional : 

– Short Wavelength Camera (PI: G. Stacey, Cornell)     (*) 
– Long Wavelength Camera (PI:  S. Golwala, Caltech)   (*) 
– Direct Detection MOS  (PI: M. Bradford, JPL)       (*) 
– Heterodyne Feed Array  (PI: J. Stützki, Kӧln) 
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(*) Direct detection instruments 
MKIDs are technology of choice: 
they are intrinsically multiplexable, 
and can be implemented into large 
format arrays  with relatively 
simple readout electronics.   

432 pixel TiN 
MKID array for 
MAKO/SWCam 
(Caltech/JPL) 
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Short Wavelength Camera   (SWCam) 
• 7 planar 

subarrays ~ 8000 
pixels each @ 
2.9” p.s. ⇒ 
56,000 pixel 
submm camera 
w/ 13’ FoV 

• Primary band 350 
μm; secondary 
access to 450,  
200 μm bands  

• Meandering 
inductor coupled 
direct absorption 
MKID arrays 



Long-Wavelength Camera 

• PI: Sunil Golwala 
• Primary Observing Bands 

– Between 750 μm and 3.3 mm 
– 6 sub-arrays 
– 20’ FoV  
– ~ 40,000 pixels 

• Technology 
– Antenna coupled MKID 

detectors 
– TES/feed-horn coupled backup 
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LWCam 

SWCam 

CHAI 

CCAT Nasmyth Field 



X-Spec: A Multi-Object Spectrometer 
for CCAT • PI: Matt Bradford 

• Spectral coverage: 195 GHz – 520 
GHz in 2 bands 

• Redshifts from CO lines at z ~ 0 to 
3, fine-structure lines at z ~ 3 to 10 

• Resolving power: 400 – 700 
• Simultaneous spectra: Between 20 

and 300 beams on the sky likely 
fixed beam positions for larger 
formats 

• Technology:  “on-chip” filter bank 
architecture with MKID readouts 

• Fed with swinging arm twin 
periscopes 
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Death star 
configuration 



CHAI: CCAT Heterodyne Array 
Instrument 

• PI: Jürgen Stutzki 
• Heterodyne, dual frequency array 
• Operating bands: 500 GHz (600 μm) and 850 GHz 

(350 μm) 
– 2’ × 2’, 14” spacing at 600 µm 
– 1’ × 1’, 8” spacing at 370 µm 
– Mid-J CO; 13CO, and [CI] F-S lines in Galactic star 

formation regions and nearby galaxies  
– Comets in the HDO 110-101 509 GHz line 

• 64 (baseline), 128 (goal) pixels in each band 
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CCAT Consortium Members 
• Cornell University (*) 
• California Institute of Technology(*)/Jet Propulsion 

Laboratory 
• University of Colorado(*) 
• University of  Cologne(*) + University of Bonn 
• Canadian consortium(**): 

• U. of Waterloo, U. of British Columbia, U. of Toronto,  
Dalhousie U.,  McGill U., of Western Ontario, 
McMaster U. and U. of Calgary 

• Associated Universities, Inc. 
• U.S. National Science Foundation  

 
           (*) Signers  of CCAT Consortium Agreement and members of CCAT Corp. 
             (**) Members of Canada Corp., which is in process of joining CCAT Corp.  



Project Timeline 
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• October 2003: Partnership Workshop in Pasadena 
• Feb 2004: MOU signed by Caltech, JPL and Cornell 
• 2005: Project Office established 
• 2006: Feasibility Study Review 
• 2007-2010: Consortium consolidation, design development.  
                      Site selection completed 
• 2010: First-ranked mid-scale project by Astro2010 
• 2010 Nov: $11M donation by F. Young 
• 2011 Feb: Jeff Zivick takes over as PM 
• 2011 Jun:  NSF Award of $4.5M toward CCAT  
                      Engineering Design 
• 2011 Nov: UKӧln/Bonn awarded $9M by German  Foundation  
                      for CCAT 
• 2011-2013: Detailed Engineering Design (EDP) underway 
($12.7M) 
• mid-2013:  Design Review 
• 2013-2017: Construction and First Light 
 



© 2011. CCAT. All Rights Reserved. www.CCATObservatory.org 
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